Total	No. o	of Questions : 8]	200	SEAT No.:					
P59	95			[Total	No. of Pages : 4				
		[5869]	-208						
	S.E. (Civil)								
		CONCRETE TH		OGY					
		(2019 Pattern) (Semester -	IV)					
Time	2:21/2	Hours]		[M	ax. Marks: 70	1			
Instr	ructio	ons to the candidates;							
	<i>1</i>)	Answer Q 1 or Q 2, Q.3 or Q.4, Q.	5 or Q.6, Q.7 o	r Q.8.					
	<i>2</i>)	Bold figures to the right indicate							
	<i>3</i>)	Neat alagrams must be drawn wh	nenever necess	ary.					
	<i>4</i>)	Use of non programmable calcula	ator is allowed	in the exam	ination.				
	<i>5</i>)	Your answers will be valued as a	whole.						
	6)	If necessary assume suitable data	and indicate	clearly.					
	<i>7</i>)	Use of IS codes 10262, 456 is not	allowed.	9					
		S	2) · K	y •					
<i>Q1</i>)	a)	Explain the effect of water cent	ent ratio and o	effect of ma	ximum size of	•			
		aggregate on the strength of cor	crete.		[9]				
	b)	Explain the relation between con	npressive and	tensile stren	gth of concrete	;			
		6	0						
					[8]	(
			?		C	V			
					زي:	,			
Q2)	a)	Enlist non destructive tests for	concrete. Exp	lain reboun	d hammer test				
		along with its limitations.			[9]				
	1- \	E-ulain flammal 2000 at land and			[O]				
	b)	Explain flexural strength test on	concrete with	i neat sketch	[8]				
					000				
<i>Q3</i>)	a)	Define concrete mix design. En	ilist objective	s in mix des	sign as well as	,			
		factors affecting the mix design.		, 66	[9]				
	b)	Enlist the various methods of c	concrete mix	design. Writ	e step by step	,			
	- /	procedure for concrete mix desi	/ 7	A 1-					
				7	r, 1				
		OF	5						

P.T.O.

Q4) a) Design a concrete for grade M25 using IS code method for following

data: [14]

Parameter : Details
Grade designation : M25
Standard deviation,s : 4.00
Factor based on the grade of concrete, X : 5.50

Type of cement : OPC 53 grade conforming

to IS 8112

Workability : 75 mm (slump)

Exposure conditions : Moderate (for RCC)

Degree of supervision : Good

Maximum cement content : 450 kg/m³

Type of aggregate : Angular coarse aggregate

Specific gravity of cement : 3.15 Specific gravity of coarse aggregate : 2.70

and fine aggregate

Water absorption of coarse aggregate : 0.50%
Water absorption of fine aggregate : 1.00%
Free surface moisture for coarse aggregate Nil
Free surface moisture for fine aggregate Nil

Sieve Analysis

Coarse aggregate

	Analysis of coarse Percentage of different fractions					
IS Sieve	aggregat	aggregate fraction				
(mm)	I	II	6. I	II	Combined	Remarks
			(50%)	(50%)	(100%)	Š
20	100	100	50	50	100	Conforming
10	2.80	78.30	1.4	39.15	40.55	to Table 7 of
4.75	0	8.70	0	4.35	4.35	IS 383

Fine aggregate: Conforming to grading Zone II of Table 9 of IS 383

Water Content per m³ of concrete for 50 mm slump

Sr.	Nominal maximum size of aggre	gate Maximum water content
No.	(mm)	(kg/m³)
i)	10	208
ii)	20	186
iii)	40	165

Volume of coarse aggregate per unit volume of total aggregate for water - cement/water-cementitious material ratio of 0.30:

Sr.	Nominal maximum	Volume of coarse aggregate per unit volume of total			
No.	size of aggregate	aggregate for different zones of fine aggregate			
	(mm)	Zone III	Zone II	Zone I	
i)	10	0.56	0.54	0.52	
ii)	12.5	0.58	0.56	0.54	
iii)	20	0.68	0.66	0.64	

Sr.	Nominal maximum size of	Entrapped air, as % of volume of
No.	aggregate (mm)	concrete
i)	10	1.0
ii)	12.5	0.80
iii)	20	0.5

Minimum cement content, maximum W/C and minimum grade of concrete for different exposures with normal weight aggregates of 20 mm nominal maximum size:

	_)	
Sr.	Exposure	Minimum cement	Maximum	Minimum grade of
No.		Content (kg/m³)	W/C	concrete
i)	Mild	300	0.55	M20
ii)	Moderate	300	0.50	M25
iii)	Severe	320	0.45	M30
iv)	Very severe	340	0.45	M35
v)	Extreme	360	0.40	M40
b)	,	rength	10.76.76.76.76.76.76.76.76.76.76.76.76.76.	[4]
69]-208		3	8.	

- Mean strength i)
- Variance ii)
- Standard deviation iii)
- iv) Coefficient of variation

Q 5)	a)	Write short note on:	[8]				
		i) Roller compacted concrete					
		ii) Under water concreting					
	b)	Explain the cold and hot weather concreting.	[9]				
		OR					
Q6)	a)	Write short note on:	[8]				
		i) Fiber reinforced concrete					
		ii) Geo-polymer concrete					
	b)	What do you meant by light weight concrete and discuss its types.	[9]				
		C 100°					
<i>Q7</i>)	a)	Define durability of concrete. Explain its significance and discuss					
		factors affecting the durability of concrete	[9]				
	b)	Write short note on:	[9]				
		i) Sulphate attack on concrete					
		ii) Chloride attack on concrete					
	1	Write short note on : i) Sulphate attack on concrete ii) Chloride attack on concrete iii) Carbonation of concrete					
(19)	2)		101				
Q 8)	a)	Write short note on: [12]					
		i) Evaluation of cracks in concrete and its necessityii) Symptoms and diagnosis of distress					
		iii) Correction monitoring and proventive massures					
	b)	Discuss the application of fiber reinforced polymer (FRP) and polymer impregnated concrete for the retrofitting of concrete structures. [6]					
	0)	impregnated concrete for the retrofitting of concrete structures.	[6]				
		9.					
		impregnated concrete for the retrofitting of concrete structures.					
		90.×					